
2020-21 TST Team Visit:
Center Overview

Prof. Patrick G. Bridges

University of New Mexico

Overview

• Introductions and new project personnel

• Administrative Updates

• Overall goals and approach

• Brief summary of major activities

• Current challenges/issues

Schedule after this talk

• This morning - discussion of major activities
• Overview (this talk)

• Assessment planning and next steps (Puri)

• Initial Assessment Results (Me)

• Optimization/Implementation (Tony and Derek)

• Lunch/Early Afternoon – Research talks
• Amanda Bienz (UNM)

• Student lightning talks

• Afternoon – Time for Additional discussions

• Schedule is flexible – can change as needed

Introductions

• TST Team Members
• Jon Riesner (LANL)
• Kevin Pedretti (SNL)
• Olga Pearce (LLNL)

• Other DOE Personnel

• Center Senior Personnel
• Patrick Bridges (UNM)
• Puri Bangalore (UAB)
• Tony Skjellum (UTC)
• Abi Arabshahi (UTC)
• Amanda Bienz (UNM)

• Administrative Support
• Tracy Wenzl (UNM)

• Postdocs
• Thomas Hines (UTC)
• Ryan Marshall (UTC)
• (*) Derek Schafer (UTC)

• Students
• Gerald Collom (UNM)
• Jered Dominguez-Trujillo (UNM)
• Keira Haskins (UNM)
• (*) Pepper Marts (UNM)
• Tanner Broaddus (UTC)
• Thomas Gorham (UTC)
• (*) Garrett Hooten (UTC)
• (*) Carson Woods (UTC)

(*) Supported by other DOE funds

Administrative update

• All contracts and subcontracts in place

• SARAPE and system access moving smoothly

• Student spring/summer placements proceeding
• Jered Dominguez-Trujillo – Sandia (spring 2020)

• Keira Haskins – Sandia

• Gerald Collom – LLNL

• Others TBD

Overall Goal:
Performance Portability

• Data movement in complex systems (accelerators,
memory hierarchies, NICs) limit application performance

• The communication system should be in charge of
optimizing data movement between processes/nodes

• For that to happen, communication abstractions must:
• Supply the information needed to optimize data movement

• Not overly-constrain application programmers, frameworks, or
runtimes (e.g. synchronization)

• Actually be efficient and easy to use

• Need usable communication abstractions that capture
applications’ high-level communication plans

What happens today?

• Most Applications and frameworks use the low-level
communication primitives in MPI

• Isend, Irecv
• Primitive types
• Hand-packed buffers
• Global synchronous collectives

• Because they:
• Perform predictably across systems
• Are consistently well optimized

• And these work as well as application programming
in C and assembly has always worked

What could be done?

• MPI has higher-level abstractions that could help
• In the standard (derived data types, neighbor collectives,

persistent communication)
• In upcoming standards (partitioned communication)
• In development (combinations of these features)

• Why aren’t they used?
• Real applications don’t use abstractions that are not

consistently well-optimized across implementations
• Developers and vendors don’t optimize abstractions that

aren’t used in real applications

• There are also still big gaps in the abstractions
available

Example
• Cabana Distributor class pseudocode

• This is literally a hand-built neighbor collective on a graph communicator

• Kokkos code packs/unpacks complex types without knowledge of the
network or communication system

• But most MPIs don’t optimize this yet, particularly with complex types, so:

This is the right thing for programmers to do today even though
it cripples MPI’s ability to do better

for (int n = 0; n < num_n; ++n) {

auto recv_subview = Kokkos::subview(recv_buffer, recv_range);

MPI_Irecv(recv_subview.data(), MPI_BYTE, distributor.neighborRank(n));

}

for (int n = 0; n < num_n; ++n) {

auto send_subview = Kokkos::subview(send_buffer, send_range);

MPI_Send(send_subview.data(), MPI_BYTE, distributor.neighborRank(n));

}

MPI_Waitall();

Kokkos::parallel_for("Cabana::Impl::distributeData::extract_recv_buffer",

extract_recv_buffer_policy, extract_recv_buffer_func);

High-Level Approach

• Understand the desired mapping from the application
to the communication system

• What and how do applications want to communicate?

• What can communication systems effectively optimize?

• Create abstractions that bridge this divide well
• What communication abstractions should exist to support

applications well?

• How should we optimize these abstractions so that they
perform consistently and efficiently?

• Complements research on optimizing existing
abstractions by other research groups

Brief Summary of Major
Activities to date

• Formative Assessment
• Initial examination of key mini-apps in collaboration

with TST team members and lab collaborators

• Full draft assessment plan, including production apps
and associated mini-applications

• Assessment of application tracing tools

• Collection and initial examination of existing
application traces and tools

• Work on getting access to DOE production codes

• Design of scalable quantitative analysis approach

Brief Summary of Major
Activities to date

• Research Infrastructure
• Assessment of ExaMPI needs for supporting initial

mini/proxy application set

• Implementation of additional ExaMPI primitives

• Repository for holding application traces

• Initial work designing/adopting experiment
management infrastructure

Brief Summary of Major
Activities to date

• Implementation/Modeling/Optimization
• Initial evaluation of neighbor collectives in a mini-

application

• Partitioned communication implementation and
measurement

• Modeling variation in application performance

• GPU support for partitioned communication

• Modern C++ interface for performance

Outstanding Issues/Challenges:
General assessment

• Appropriateness of chosen applications and
proxies for assessment

• Prioritization feedback for final set of assessed
applications

• Appropriate multi-scale/multi-physics proxy
• Examining UCDavis Z-Model as potential example

• Would need to develop new code/codes

Outstanding Issues/Challenges:
Codes and inputs for assessment

• Collaborations with lab partners have helped identify proxy and
miniapps that reasonably characterize production applications

• Current access to production codes for assessment
• HIGRAD_basic (EAR 99): Access at UNM/LLNL in progress with LANL
• EMPIRE (ITAR): Access on SNL restricted systems in progress
• EMPIRELite (EAR99): Still in development at SNL

• Would still like to directly qualitatively and ideally quantitatively large-
scale applications, either via additional traces or by direct
measurement

• Some assessment can happen on summer internships, but would
ideally like to limit reliance on these

• Need (ideally unrestricted) input decks for export-controlled
applications that expose relevant communication problems and can
be easily published

Outstanding issues/challenges:
Access to test platforms

• Current systems in used
• Large-scale: Lassen, Quartz, Solo, Stria, Capulin
• Testbed: Some SNL ECN systems

• Have access to:
• GPUS: NVIDIA V100 (Lassen, UNM)
• IBM/Intel/ARM CPUs
• Mellanox, Intel, Cray NICs

• Will need access testbed access to AMD and
Intel GPU systems

Questions/Additional
Discussion?

